ULTRA-COMPACT HELICOPTER DIGITAL AIR DATA TEST SET

The MPS43H is a digital technology portable Air Data Test Set incorporating many standard features normally found in more expensive air data test sets. The MPS43H is a customized version of the MPS43, especially configured for use with helicopters. It is rugged and splashproof for demanding flight line use.

The instrument is easy and fast to use by both experts and first time users. Testing and troubleshooting with the MPS43H can be performed via the integrated touch screen and an intuitively arranged color-coded keypad. Readings of commanded and measured test values are displayed on the color LCD display. Readings of both commanded and measured test values are displayed simultaneously.

The MPS43H incorporates an intelligent, user friendly interface including software that rejects entered values that exceed the preselected limit ranges.

The instrument uses “smart” precision silicon bridge transducers for maximum accuracy at all helicopter related altitudes & airspeeds and has low heat generation for high component endurance and high accuracy. It comes equipped with an internal rechargeable battery with approximately 30 minutes life, for safe return to ambient pressure in case of power loss.

It is small, lightweight and very portable, ideal for transporting over widespread working areas.
MPS43H Standard Specifications

SAFETY
The MPS43H is designed for maximum safety during testing. Design features protect the test set and instruments under test. Negative Qc condition of Ps greater than Pt is always prevented. With loss of power the test circuit is safely isolated and can be manually vented preventing instrument and test set damage. Preset factory or user programmed, password protected, safe limit factors prevent damage to the instruments under test during operation.

STANDARD TEST FUNCTIONS
- Pressure/vacuum generation, internal pumps
- Automatic leak check
- Controlled venting to ambient
- Altitude/airspeed input for helicopter ranges
- Static/dynamic (Qc)/total pressure input
- Altitude/airspeed rates input
- TAS / IAS toggle, TAS temperature correction
- Altitude offset correction
- 30 user test programmed profiles of 26 steps each.
- Audible indication when approaching set point
- Various measure units selectable
- EPR generation

DISPLAY AND KEYPAD
Integral display and keypad in splash proof and shock protected front panel. LCD multi-colored backlit touch screen, 3.5” (114mm) diagonal, displays all test parameters.

DISPLAYED UNITS
- Altitude: ft, m, hm
- Airspeed: kts, km/h, mph
- Pressure: inHg, hPa, kPa, Pa, psi, mmHg, inH2O

PHYSICAL SPECIFICATIONS
- Weight: 8.8 lbs. (4 kg.)
- Dimensions: L 11.8 x W 9.8 x H 4.7 in. (L 300 x W 250 x H 120 mm)
- Connections: Static-AN-4 37° flare
 - Pitot: AN-3 37° flare
 - Pressure: AN-4 (Ps), AN-4 (Pt)
- Staubli red (Ps), Staubli black (Pt)

ENVIROMENTAL
- Temperature range
 - Operating: -5°C to +50°C
 - Storage: -20°C to +70°C
- Splashproof and shockproof.
- CE compliant.

WARRANTY
- Unit: 2 Years
- Pumps: 1500 hours or 2 years, whichever expires first.

POWER SUPPLY
- Universal power supply: 90-240 VAC; 50-400 Hz.
- Rechargeable internal battery providing 30 minutes back up for safe shut down.
- For battery operation see the EPU6 under Associated Products.

OPTIONS
- A0 28 VDC
- A2 No internal battery
- B7 Gray Code Altitude Device Read-out
- F4 ADWIN PC Control software (unlocked)
- K2 AN6 (Ps), AN4 (Pt)
- K5 Staubli red (Ps), Staubli black (Pt)

INCLUDED ACCESSORIES
- ADWIN PC Control software (MPS43/43H only)
- USB cable
- Power cable
- Hoses and fittings

ASSOCIATED PRODUCTS
- EPU6 External battery power unit, providing 6 hours operation
- DMAKV2 Vacuum Source for adapter hold down use
- Pitot-static adapters
- Pressure indicators/transfer standards

CALIBRATION
One year interval, performed from front panel.

NOTES
- Selectable to ± 1 ft/min
- Total accuracy includes all metrological uncertainty contributions for the pressure measured. Metrological data has full traceability to NIST.

TABLE

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RANGE</th>
<th>RESOLUTION</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEASURE</td>
<td>CONTROL</td>
<td>MEASURE</td>
</tr>
<tr>
<td>Altitude</td>
<td>(ft)</td>
<td>-2,000→25,000</td>
<td>-2,000→25,000</td>
</tr>
<tr>
<td>Vertical speed</td>
<td>(ft/min)</td>
<td>0→3,000</td>
<td>0→3,000</td>
</tr>
<tr>
<td>Static</td>
<td>(inHg abs)</td>
<td>11.1→32.15</td>
<td>11.1→32.15</td>
</tr>
<tr>
<td></td>
<td>(hPa abs)</td>
<td>376→1088</td>
<td>376→1088</td>
</tr>
<tr>
<td>Airspeed</td>
<td>Standard (kts)</td>
<td>0→300</td>
<td>0→300</td>
</tr>
<tr>
<td>Airspeed slew rate</td>
<td>(kts/min)</td>
<td>0→300</td>
<td>0→300</td>
</tr>
<tr>
<td>Pitot (Qc)</td>
<td>(inHg diff)</td>
<td>0→4.53</td>
<td>0→4.53</td>
</tr>
<tr>
<td></td>
<td>(hPa diff)</td>
<td>0→154</td>
<td>0→154</td>
</tr>
<tr>
<td>Engine Pressure Ratio</td>
<td>(EPR)</td>
<td>1=1.15@ SL</td>
<td>1=1.15@ SL</td>
</tr>
</tbody>
</table>

Ongoing development results in specifications being subject to change without notice